Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures

نویسندگان

  • M G Honig
  • R I Hume
چکیده

A prerequisite for many studies of neurons in culture is a means of determining their original identity. We needed such a technique to study the interactions in vitro between a class of spinal cord neurons, sympathetic preganglionic neurons, and their normal target, neurons from the sympathetic chain. Here, we describe how we use two highly fluorescent carbocyanine dyes, which differ in color but are otherwise similar, to identify neurons in culture. The long carbon chain carbocyanine dyes we use are lipid-soluble and so become incorporated into the plasma membrane. Neurons can be labeled either retrogradely or during dissociation. Some of the labeled membrane gradually becomes internalized and retains its fluorescence, allowing identification of cells for several weeks in culture. These dyes do not affect the survival, development, or basic physiological properties of neurons and do not spread detectably from labeled to unlabeled neurons. It seems likely that cells become retrogradely labeled mainly by lateral diffusion of dye in the plane of the membrane. If so, carbocyanine dyes may be most useful for retrograde labeling over relatively short distances. An additional feature of carbocyanine labeling is that neuronal processes are brightly fluorescent for the first few days in culture, presumably because dye rapidly diffuses into newly inserted membrane. We have used carbocyanine dyes to identify sympathetic preganglionic neurons in culture. Our results indicate that preganglionic neurons can survive in the absence of their target cells and that several aspects of their differentiation in the absence of target appear normal.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newly synthesized carbocyanine fluorescent probes, their characteristics and behavior in proliferating cultures

Aim. To study possibile application of C2, C9, C18 and JC-1 carbocyanine fluorescent dyes for cell culture characterization. Methods. Morphological methods, fluorescence-activated cell sorting (FACS) analysis, luminescent microscopy were used. Results. The studied carbocyanine probes were shown to be preserved in dividing cells for at least 4 duplications. It was found that carbocyanine probe J...

متن کامل

Dil and diO: versatile fluorescent dyes for neuronal labelling and pathway tracing.

The fluorescent carbocyanine dyes dil and diO have an extensive history of use in cell biology, but their use as neuronal tracers is relatively recent. We found in 1985 that these molecules were excellent retrograde and anterograde tracers in the developing nervous system. We went on to show that these dyes were retained in neurons placed in culture, that they initially labelled the processes a...

متن کامل

Coating particles with dextran-conjugated fluorescent dyes or other hydrophilic compounds.

Imaging and reconstruction of developing neurons require cells that are labeled in a way that distinguishes them from their neighbors. This can be achieved with ballistic labeling, which refers to the delivery of a cell label by means of carrier particles (tungsten or gold) propelled from a pressurized gun. Ballistic delivery can reach many dispersed cells in one shot and can deploy a wide vari...

متن کامل

Near-infrared dichromic fluorescent carbocyanine molecules.

Central to major advances in biochemical assays, molecular sensor technologies, and molecular optical imaging are fluorescent materials that provide high detection sensitivity for molecular processes. In biological optical imaging, the low tissue autofluorescence and the deep penetration of light into the tissues observed at wavelengths between 650 and 900 nm allow the use of near-infrared (NIR...

متن کامل

Culturing Adult Rat Hippocampal Neurons with Long-Interval Changing Media

Background: Primary cultures of embryonic neurons have been used to introduce a model of neurons in physiological and pathological conditions. However, age-related cellular events limit this method as an optimal model in adult neurodegenerative diseases studies. Besides, short-interval changing media in previous cultures decreases the effectiveness of this model. As an example of this matter, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 103  شماره 

صفحات  -

تاریخ انتشار 1986